Learn about how Wavefront deals with cardinality.

Wavefront supports high cardinality when dealing with timeseries data and infinite cardinality in its distributed tracing offering. Wavefront can handle the cardinality of more than 200,000 concurrently running containers per Kubernetes cluster. Even though Wavefront can handle high cardinality data shapes, high cardinality can cause system slowdown and metrics retrieval issues.

What Is Data Cardinality?

Data cardinality is the number of values in a set. For example, in a database, data cardinality is the number of distinct values in a table column, relative to the number of rows in the table. The more distinct values that you have, the higher cardinality is. In monitoring, data cardinality refers to the number of series in a timeseries.

Generally, timeseries data in a simple form is labeled as a name, value, and timestamp. For example:

cpu.usage.user.percentage <metricvalue> [<timestamp>]

In Wavefront, we enhance the data with tags and indexes, so that it has more context. For example:

cpu.usage.user.percentage <metricvalue> [<timestamp>] source="mysystem" [pointTags]

Kubernetes environments typically also include the pod name. For example:

kubernetes.pod.cpu.usage_rate <metricvalue> [<timestamp>] source=ip-10-0-1-203.eu-west-1.compute.external
cluster="prod" label.k8s-app="kube-dns" namespace_name="kube-system" pod_name="<name-of-the-pod>"

Timeseries Data Cardinality in Containerized Environments

Containerized environments are dynamic, ephemeral, and rapidly scaling. In containerized environments, the container IDs or pod names often change, which might cause high cardinality in the system. To add additional context on the deployments, a point tag is usually added. Thus, the number of unique combinations of point tags might increase exponentially.

Point tags are important for several reasons:

  • They contain and provide important context and reduce the mean time to resolution.
  • They solve use cases at query time.
  • If an outage happens, metrics must be analyzed iteratively across many permutations.
  • Fewer point tags might limit the ability to query metrics in meaningful ways.

For more information about point tags, see Fine Tune Queries with Point Tags.

What Is Timeseries Data Cardinality?

Almost all timeseries databases are key-value systems and each unique combination of metric and point tags requires an index entry. When the number of index entries increases, the ingestion and query performance suffer because the read and write operations require scanning larger spaces.

When you deploy a large system, there’s a rapid burst of new index entries, which can lead to high cardinality issues, such as slowdown or unresponsiveness of the monitoring system.

Wavefront and High Cardinality

Wavefront usually deals gracefully with high cardinality because it has the following features:

Applies top-down and bottom-up indexes

Top-down indexes are the so-called metric source tags. In Wavefront, instead of just using the metric name as the primary key, the source is also considered a first-class citizen and is part of the primary metric host tag index. This improves the Wavefront performance and retrievability of data.

A second tag value index allows for queries filtered by tag values to retain high performance. The combination of 2 primary indexes (metric and source) for timeseries data allows for greater cardinality with no impact on the data ingestion or query performance.

Keeps the most recent indexes

In Wavefront, indexes that deal with current data are kept in fast memory. Wavefront moves the indexes that have not received new data for 4 weeks to older storage. Containerized environments benefit especially from this because of the ephemeral nature of the generated indexes.

Uses correlated tagging

Some metrics always have the same combination of tag keys and values. Data ingestion heuristics can spot when the same combination of tags is routinely indexed. Wavefront correlates tags and optimizes index creation and usage to increase the performance for metrics with the same combination of tags.

Uses dynamic programming Most queries are similar and run repeatedly, iteratively, and streaming. For example, queries such as *.system.cpu.*, env=prod would damage many systems when fetching proper indexes.

Wavefront uses a dynamic programming in the backend which:

  • Breaks down a complex search into simple sub-searches.
  • Solves each sub-search once and store the results.

The dynamic programming allows for greater query performance at a cost of more storage and works with metric, host, and tag values.

Uses FoundationDB as an underlying database

FoundationDB provides excellent performance on commodity hardware. It is an open-source key-value store that allows you to support very heavy loads.

For more information, watch the following video, in which the Wavefront co-founder Clement Pang explains cardinality.

about cardinality

Optimizing Your Data for Wavefront

Although Wavefront supports high cardinality for time series data, to avoid high cardinality issues, consider the following recommendations:

  • Do not use Wavefront for monitoring individual event data points. If you want to monitor such data, use the distributed tracing offering. See Distributed Tracing Overview and Tracing Best Practices.

  • Follow best practices:

    1. Ensure that the metric names are stable and do not change.
    2. Keep source names stable. Source names change over time, but make sure that they don’t change frequently.
    3. Use point tags for data that are ephemeral.
    4. In Kubernetes, where point tags are usually called labels, add only the point tags that you really need.

For information about metric, source, and point tag names, see Wavefront Data Naming Best Practices. You can also understand more about the metrics structure, sources and the sources browser, and tags, by exploring Metrics and the Metrics Browser, Sources, and Organizing with Tags.

Learn More!

Our Customer Success team has prepared several KB articles that give additional detail.